BeatBeam

SDP 2015 PDR

Daniel Bond, CSE

Brandon Sprague, CSE

Brian Hickey, CSE

Duncan Smith-Freedman, EE

Team

Daniel Bond (Fearless) Team Leader

Board Interpretation, Musical Implementation

Brian Hickey

Networking, Wireless Connectivity

Duncan Smith-Freedman

Signal-to-Audio Interpreter, Physical Design, Power Brandon Sprague

Project Description

- Simultaneous multiplayer music creation via a simple to use web application
- Central node housing multiple speakers, a wireless access point, and a web server
- LED light array for visual interpretation of music

Alternative Solutions

- Traditional Music Lessons
 - large time investment; doesn't cater to casual music creation
 - professional lessons are expensive
 - Instruments are expensive to buy/rent
- Garageband
 - cost-effective
 - potential for poor sounding music still tremendously high
 - steep learning curve
- Guitar Hero / Rock Band (rhythm video games)
 - Both series discontinued due to market saturation during late 2000s
 - Limited to on-disk setlists
 - Additional songs have minimum cost \$1.99/song

Alternative Solutions

- Traditional Music Lessons
 - large time investment; doesn't cater to casual music creation
 - professional lessons are expensive
 - Instruments are expensive to buy/rent
- Garageband
 - cost-effective
 - potential for poor sounding music still tremendously high
 - steep learning curve
- Guitar Hero / Rock Band (rhythm video games)
 - Both series discontinued due to market saturation during late 2000s
 - Limited to on-disk setlists
 - Additional songs have minimum cost \$1.99/song

-BeatBeam-

How is BeatBeam different?

- Collaborative and Continuous
 - Groups of people can simultaneously create music
- Universal Platforming
 - Accessible from any WiFi enabled device with web browser
- Makes a game out of music creation
 - Low barrier to entry, fun, addicting
- Immediate gratification
 - Hear and see the results of your efforts within seconds
- Small and lightweight
 - Easy to bring anywhere
- Easy to use interface
 - Simple interface for touch devices and mouse users

Interface Prototype

Significance and Societal Impacts

- Music creation has little, if any, moral implications
- Studies show music has positive neurological benefits such as improved memory and increased brain activity^[1]

Block Diagrams, High level View

Distribution of Tasks

- **Brandon Sprague** Design and development of required webbased software interface(s) including multiplayer functionality
- **Brian Hickey** All networking components, including establishing of reliable client/server connection over 802.11, QoS, routing, DNS
- **Daniel Bond** Sound generation, note/chord composition from game board state, abstraction of music theory from the end user
- **Duncan Smith-Freedman** Audio signal processing, PCB design (If needed), 3D design, modeling, and printing, power

Block Diagram - Web Server

.

Block Diagram - Music Generation Module

Computation	System		
Grid State (Unix Pipe) (C++)	Music Generation (C++)	Broadcomm BCM2385 Media Processor	Audio Out (Audio Jack)

Block Diagram - Audio to Light Interpreter

Hardware

- ARM M4 Cortex High performance (72 MHz), low power (8-157 uW/MHz), low cost, ability to perform FFT necessary for DSP
- Raspberry Pi Barebones Linux machine with 700 MHz CPU, audio out, can act as a WiFi access point

Why is Raspberry Pi Sensible?

- Inexpensive, large developer community
- Supports running an OS (Arch Linux)
 File System, DNS, Web Server
- Strong interface support (802.11, 802.15)
- Multiple programming language support
- Audio Processing Capability

Hardware Alternatives

- Arduino and derivatives
 - Can't support web server or WiFi routing
 - No audio processing
 - Limited library support
- HummingBoard/Intel Edison
 - Too expensive (\$100 \$200), more powerful than requirements deem necessary, unnecessary modules
- Make dedicated hardware for each module

 Infeasible and unnecessary

Security

- Customizable nature of wireless interface allows for security across all layers to be tightly controlled and customized
- Device won't have WAN connection which eliminates threats occurring outside local radio range (802.11)
- Minimal quantity of data sent wirelessly (limited to music control signals over WebSockets) allows bidirectional communication to be both specific and limited in nature, all other data blocked
- Chroot jail, ports locked down

Requirements

- Users with no prior musical experience will be able to make pleasing music more than 90% of the time
- Groups of at least 20 people will be able to concurrently create music
- <25 ms delay for syncing game state across clients

MDR Deliverables

- 1. Functioning, secure client-server wireless interface
- 2. Operational grid state interpreter and music generation module
- 3. 3D printed electronic housing prototype
- 4. LED array that responds accurately to distinct frequency ranges
- 5. Online web-interface with live-updating display

Potential Resources

• Audio Engineer

- Previously worked for Blue Man Group
- Sound mixing/song creating

Craig Colorusso

- "Sun Boxes" Art Installation
- Audio Engineer

References

Brown, Laura. "The Benefits of Music Education." *PBS*.
 10 Jan. 2012. Web. 29 Sept. 2014

Q&A Session